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Abstract. In multiferroic ferroelectromagnets, microscopic coupling interaction between the ferroelectric
and magnetic order results in the macroscopic correlation between the dielectric and magnetic proper-
ties, which is defined as magnetodielectric effect. If we classify multiferroic ferroelectromagnets as two
kinds: ferroelectric-ferromagnets and ferroelectric-antiferromagnets, we find the magnetodielectric behav-
ior of these two kinds of ferroeletromagnets show obvious difference. We analyze the origin of the different
magnetodielectric behavior and find that the fluctuation of the spin-pair correlation plays a critical role.
Soft-mode theory based on DIFFOUR model and the mean-field theory are combined to deal with multi-
ferroic ferroelectromagnetic system.

PACS. 77.80.-e Ferroelectricity and antiferroelectricity – 75.80.+q Magnetomechanical and magnetoelec-
tric effects, magnetostriction – 77.22.-d Dielectric properties of solids and liquids

1 Introduction

Multiferroics are rare materials which show the coexis-
tence of two or three of the ferroic orders: ferroelectric,
(anti)ferromagnetic and ferroelastic in the same phase [1].
To our knowledge, the earliest discovery of Multiferroics
were in the late 1950s and early 1960s, when the for-
mer Soviet union scientists found the hexagonal rare-
earth manganites having the overall formula RMnO3 (R =
Y, Ho, Er, Tm, Yb, Lu or Sc), are ferroelectromagnets
(FEM) with antiferromagnetic (AFM) and weak ferroelec-
tric (FE) properties [2–7]. The discovery and development
of FEM brings the era when the magnetic and ferroelec-
tric properties are completely separated to an end. In the-
oretical aspect, the earliest work on magnetoelectric (ME)
coupling can be traced back to 1959 [8], when Landau and
Lifshitz predicted there was an allowed term in the free
energy of the form αi,jHiEj based on the group theory,
where E and H represent external electric and magnetic
field, αij is the element of a tensor showing the corre-
lation between H and E. Then Rado proposed the two-
ion model and explained temperature dependence of the
ME effect [9], followed by the ameliorated approaches of
Hornreich et al. [10], Yatom et al. [11], and Gehring [12].
These theories, however, are concerned only with the cou-
pling term caused by the external field as perturbation to
the system, thus it is only applicable to the system which
has weak coupling.
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However, as far as FEM is concerned, although exper-
imental evidence has shown that the ME energy, which
comes from the coexistence of the spontaneous ferroelec-
tric and antiferromagnetic order, can be comparable with
the magnitudes of the intrinsic spin and ferroelectric ener-
gies [13,14], it seems that this kind of ME energy does not
trigger off research interest. One of the most important
reasons is that, for many of the examined ferroelectro-
magnetic compounds, the ferroelectric transition temper-
ature TE is much higher than the magnetic transition
temperature TN . Intuitively, the coupling interaction will
diminish as the difference between TE and TN increases.
Thus such a coupling may not self-evident for ferroelec-
tromagnets with TE very different from TN . Another rea-
son arises from the difficulty in finding a suitable theory
to describe the coupling. Besides, a measurable physical
quantity hadn’t been found to directly probe the magne-
toelectric coupling. Until recently, Z.J. Huang et al. have
detected an inversed S-shaped anomaly in both dielectric
constant and loss tangent in bulk yttrium YMnO3 [15].
Detecting the ME coupling through the dielectric anomaly
is a new method, which again ignites the interests in
investigating the magnetoelectric effect in ferroelectro-
magnets. Subsequently, the similar dielectric anomaly has
also been observed in other ferroelectromagnets, such as
BiMnO3 [16], EuTiO3 [17], TeCuO3 and SeCuO3 [18]
etc. Theoretically, Gao et al. [19,20] first investigated
the phase transition in ferroelectromagnetic lattice by the
method of the Monte Carlo simulations. They proposed a
possible coupling form to describe the intrinsic magneto-
electric coupling in the ferroelectromagnetic system and
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gave a detailed analysis of the magnetoelectric properties,
which initiated the theoretical research on the inherent
magnetoelectric coupling.

In the past two or three years, magnetocapaci-
tance (MC), i.e. the change of the dielectric constant
induced by the external magnetic field, becomes a hot is-
sue. Large magnetocapacitance has been observed in fer-
roelectromagnets BiMnO3 [16], EuTiO3 [17], SeCuO3 [18],
DyMnO3 [21] etc. On the one hand, the measurement of
the magnetocapacitance is a powerful technique to detect
the magnetoelectric coupling mechanism. On the other
hand, MC itself is attractive for practical applications. A
number of device applications have been suggested for the
magnetodielectric effect, including multiple state memory
elements, electric field controlled ferromagnetic resonance
device, and variable transducers with either magneti-
cally modulated piezoelectricity or electrically modulated
piezomagnetism.

In this paper, we define the magnetic influence on
the dielectric property as magnetodielectric (MD) ef-
fect. Considering the different magnetic property between
ferromagnet and antiferromagnet, we classify FEM as
the ferroelectric-ferromagnets (FE-FM) and ferroelectric-
antiferromagnets (FE-AFM). The magnetodielectric effect
in FE-FM and FE-AFM is given a comparative investi-
gation from three aspects: 1. The origin of the MD ef-
fect; 2. The dielectric change; 3. The magnetoelectric
susceptibility.

2 Models and analysis

In our model, we divide the ferroelectromagnetic sys-
tem into two separated subsystems: the magnetic subsys-
tem and the ferroelectric subsystem. Meanwhile, we in-
troduce the coupling form as a medium to connect the
two subsystems. Following Alcantara and Gehring [22] and
Janssen [23], the Hamiltonian can be written in three parts
as follows:

H = Hm + He + Hme, (1)

where Hm: the Hamiltonian of the magnetic subsys-
tem, He: the Hamiltonian of the ferroelectric subsystem,
and Hme: the coupling between the two subsystems.

Ising model is used to describe the magnetic subsys-
tem. The Hamiltonian of the magnetic subsystem Hm

comprises four origins: the coupling of the nearest neigh-
bors and the next nearest neighbors, magnetic static en-
ergy, and single-ion anisotropy energy

Hm = −
∑

〈i,j〉
J1SiSj −

∑

[k,l]

J1SkSl −
∑

i

hSi − D
∑

i

S2
i .

(2)
J1 and J2 represent the nearest and next nearest exchange
integral, respectively. h is the external magnetic field along
spin ordered direction. D indicates the uniaxial single-ion
anisotropy constant. Si is the Ising spin at site i (the to-
tal spin quantum number S = 2). 〈i, j〉 and [k, l] denote
that over the nearest and the next nearest neighbors are
summed once, respectively.

The Hamiltonian of the ferroelectric subsystem He is
composed of three parts, the first part is the kinetic and
potential energy of the particle, which we use DIFFOUR
model to describe [23]. The DIFFOUR model includes
a potential energy term and the enharmonic potential,
which is called a double-well potential. The second is the
nearest neighbor electric interaction, and the third is elec-
tric static energy

He =
∑

i

(
p2

i

2m
− a

2
u2

i +
b

4
u4

i

)
−

∑

〈i,j〉
Uuiuj −

∑

i

Eui.

(3)
m is the mass. pi and ui are the particle momentum and
the electric displacement at site i, respectively. a and b
represent the double-well potential parameters. U indi-
cates polarization interaction coupling parameter, and E
denotes external electric field, which is parallel to the po-
larization direction. 〈i, j〉 represents that over the nearest
neighbors is summed once.

For the coupling interaction between the two subsys-
tems, we introduce the coupling mechanism proposed by
Gao et al., which has been pointed out in the previous
section

Hme =
∑

〈k,i〉,〈k,j〉
εijgu2

kSiSj , (4)

where g is the magnetoelectric coupling coefficient indi-
cating the intensity of the magnetoelectric coupling, uk is
the electric displacement at site k, i and j are the near-
est neighbor of site k, but i and j are different sites. For
ferromagnetic structure, εij = 1. For antiferromagnetic
structure, we adopt the same definition of εij as Gao’s
paper.

When we aim at investigating the dielectric properties
of the ferroelectromagnetic system. The Hamiltonian, un-
der the mean-field approximation, can be expressed as the
following:

H = HE + C1, HE = He + Hme, (5)

HE =
∑

i

(
p2

i

2m
− ã

2
u2

i +
b

4
u4

i

)
− Ẽ

∑

i

ui, (6)

Ẽ = E + Uz1p, (7)

ã = a − 2z2g〈SiSj〉, (8)

where C1 is a constant, representing the contribution of
the magnetic part Hm. Ẽ is the effective mean-field acting
on the ferroelectric subsystem. ã represents the amended
double-well potential parameter. ui is proportional to the
local spontaneous polarization p, i.e. p = 〈ui〉. 〈· · ·〉 rep-
resents the thermal average of the corresponding physi-
cal quantities, therefore, thus 〈SiSj〉 is the average value
of the spin-pair correlation. In cubic crystal, z1 = 6 is
the nearest-neighbor number of ferroelectric particles to a
given ferroelectric particle. z2 = 12 is the number of the
spin-pair correlation that will directly influence a given
ferroelectric particle.
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Equations about polarization and the dielectric con-
stant can be obtained from the soft-mode theory

(−ã + 3bσ + bp2)p = z1Up + E, (9)

σ(−ã + 3b(σ + p2)) = kBT, (10)

ε(h, T ) =
∂p

∂E
=

1
−ã + 3b(σ + p2) − z1U

, (11)

χem =
∂p

∂h
, (12)

where σ is the fluctuation of the electric displacement,
i.e., 〈u2

i 〉 = 〈ui〉2 + σ, ε(h, T ) represents the actual dielec-
tric constant if we neglect the vacuum dielectric constant.
χem is the magnetoelectric susceptibility. Obviously, due
to the presence of the magnetoelectric coupling both the
polarization p and the dielectric constant ε are the func-
tion of spin-pair correlation 〈SiSj〉. Here when we expand
equation (15) to the linear term of 〈SiSj〉, ε(h, T ) can be
approximately rewritten as

ε(h, T ) = ε0(1 + γ〈SiSj〉), (13)

where ε0 = 1
−a+3b(σ0+p2

0)−z1U
is the dielectric constant in

the absence of the ME coupling, and γ = 2z2gε0 is taken
as a normalized magnetoelectric coupling factor.

In order to ascertain the magnetic influence on the di-
electric property, we need to investigate the fluctuation of
the spin-pair correlation. The Hamiltonian of the ferro-
electromagnets can be rewritten as the following:

H = HM + C2, HM = Hm + Hme, (14)

where C2 is a constant, representing the contribution of
the electric part He.

For FE-FM, the calculation procedure about the spin-
pair correlation is listed in the following:

HM = −
∑

〈i,j〉
J̃1SiSj −

∑

[l,k]

J2SlSk −
∑

i

hSi − D
∑

i

S2
i

= −
∑

i

h̃Si − D
∑

i

S2
i (15)

h̃ = z1J̃1〈S〉 + z2J2〈S〉 + h, (16)

J̃1 = J1 − z3gp2, (17)

where h̃ is the effective mean-field acting on the magnetic
subsystem, J̃1 represents the amended exchange integral,
〈S〉 is the average value of the expectation value of the
Ising spin, z3 = 4 is the number of the ferroelectric particle
that will directly influence a given spin-pair correlation.
Then using the thermodynamic statistics, we derive the
average value of the spin-pair correlation in the following:

〈S〉 =
Tr

[
Si exp

[
−β

(
−h̃

∑
i

Si − D
∑
i

S2
i

)]]

Tr
[
exp

[
−β

(
−h̃

∑
i

Si − D
∑
i

S2
i

)]]

=
4e4βD sinh(2βh̃) + 2eβD sinh(βh̃)

1 + 2e4βD cosh(2βh̃) + 2eβD cosh(βh̃)
, (18)

〈SiSj〉 ≈ 〈S〉2, (19)

where β = 1
kBT , sinh(x) and cosh(x) are the hyperbolic

cosine function. With the approximation in equation (23),
the fluctuation of the spin-pair correlation induced by the
external magnetic field can be expressed as: ∆〈S〉2 =
〈S〉2(h,T ) − 〈S〉2(0,T ).

For FE-AFM, to calculate the spin-pair correlation,
we divide the magnetic subsystem into two sublattices a
and b

HM = −
∑

〈i,j〉
J̃1SiSj −

∑

[l,k]

J2SlSk −
∑

i

hSi − D
∑

i

S2
i

= −
∑

i

h̃aSai − D
∑

i

S2
ai −

∑

j

h̃bSbj − D
∑

j

S2
bj ,

(20)

h̃a = z1J1〈Sb〉 + z2J2a〈Sa〉 + h, (21)

h̃b = z1J1〈Sa〉 + z2J2b〈Sb〉 + h, (22)

J2a = J2 + 2gp2, J2b = J2 − 2gp2, (23)

〈SiSj〉 ≈ 〈Sa〉〈Sb〉. (24)

〈Sa〉 and 〈Sb〉 are the sublattice magnetization which can
be obtained by the same method in equation (18). h̃a

and h̃b are the mean-field acting on the two sublattices a
and b, respectively. J2a and J2b are the amended exchange
integrals. With the approximation of equation (28), the
fluctuation of the spin-pair correlation induced by the ex-
ternal magnetic field can be expressed as: ∆(〈Sa〉〈Sb〉) =
(〈Sa〉〈Sb〉)(h,T ) − (〈Sa〉〈Sb〉)(0,T ).

3 Results and discussion

Parameters used in our paper don’t contrapose a given
ferroelectromagnet. They are representative of the family
of ferroelectromagnets for qualitative research. For ferro-
electric subsystem, we choose a = 2, b = 4 to produce
the spontaneous ferroelectric order. For magnetic subsys-
tem we choose J1 = 0.25 (or J1 = −0.25), J2 = 0.03,
D = 0.05 to produce the ferromagnetic (or antiferromag-
netic) order. The magnetoelectric coupling coefficient is
given a moderate value: g = −0.012. According to the
given parameters, we get the ferroelectric transition tem-
perature: TE = 18 K, and magnetic transition tempera-
ture: TC = 5.4 K for FE-FM, TN = 3.9 K for FE-AFM.
This fits the fact that in most ferroelectromagnets TN

(or TC) < TE.
From the theoretical analysis we know that the

anomaly of the dielectric property, stemming from the
ME coupling, is closely related with the spin-pair
correlation. Therefore, we first discuss the fluctuation of
the spin-pair correlation. Thermal excitation and exter-
nal magnetic field are two important factors that affect
the fluctuation. Figure 1a displays temperature depen-
dence of the fluctuation for FE-FM, in which the mag-
netic fields are given as 0, 0.2, 0.4, 0.6 (tesla). Under a
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Fig. 1. FE-FM: Temperature dependence of the spin-pair cor-
relation fluctuation ∆(〈S〉2) under different magnetic fields
h = 0.2, 0.4, 0.6 (tesla); (b) FE-AFM: Temperature depen-
dence of the spin-pair correlation fluctuation ∆(〈Sa〉〈Sb〉) un-
der the magnetic fields h = 1, 2, 3, 5 (tesla).

fixed magnetic field background, fluctuation has its maxi-
mal value around the magnetic transition temperature TC ,
away from which the fluctuation will soon decrease. Under
a fixed temperature background, a higher magnetic field
will induce a larger fluctuation. Figure 1b provides the
case of FE-AFM. The magnetic fields are given a large
range from 1 to 5 (tesla) to thoroughly see the fluctua-
tion of the spin-pair correlation. As we can see, with the
increasing magnetic fields, the spin-pair correlation below
TN undergoes a remarkable change. The different phenom-
ena between FE-FM and FE-AFM may be easily under-
stood. For antiferromagnet, a larger magnetic field can
completely destroy the antiferromagnetic phase and force
the ferromagnetic phase, which means that the spin-pair
correlation undergoes a qualitative change from the anti-
ferromagnetic coupling to ferromagnetic coupling. While
for ferromagnet, only around the magnetic transition tem-
perature TC the spin-pair correlation may undergo an

Fig. 2. FE-FM: Temperature dependence of the dielectric con-
stant under ε different magnetic fields h = 0.2, 0.4, 0.6 (tesla);
(b) FE-AFM: Temperature dependence of the dielectric con-
stant ε under different magnetic fields h = 0.2, 0.4, 0.6 (tesla).

appreciable change from disordered phase to ferromag-
netic coupling.

The dielectric diagram of FE-FM is shown in
Figure 2a. There are three attracting phenomena in Fig-
ure 2a. First, when the applied magnetic field is absent
(i.e. h = 0), ε has a distinct anomaly at TC for the onset
of the spontaneous magnetic order. Second, both ε and
the anomaly of are suppressed for the application of the
magnetic fields, and the suppression becomes larger with
the increasing magnetic fields. As we know, with the ap-
plication of the magnetic field, the spin-pair experiences
a continuous transition from paramagnetic to ferromag-
netic phase. This explains why the dielectric anomaly is
suppressed. Third, only around TC , the suppression of ε
induced by the external magnetic fields is remarkable. All
these phenomena support one fact: for FE-FM, temper-
ature around TC and large magnetic field are two nec-
essary conditions to obtain remarkable dielectric change.
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Fig. 3. FE-FM: Temperature dependence of the magnetoelec-
tric susceptibility χem under different magnetic fields h = 0.2,
0.4, 0.6 (tesla); (b) FE-AFM: Temperature dependence of the
magnetoelectric susceptibility χem under different magnetic
fields h = 0.2, 0.4, 0.6 (tesla).

In Figure 2b, temperature dependence of the dielectric
constant of FE-AFM is drawn. Compare Figure 2a with
Figure 2b, we find that the dielectric constant of FE-FM
and FE-AFM shows the similar characters around their re-
spective magnetic phase transition temperature. That is
to say, the three phenomena mentioned above also appear
in FE-AFM. What makes difference is that, in FE-AFM
the dielectric change induced by external magnetic field
exists throughout the temperature range below TN . This
is attributed to the spin-pair fluctuation of FE-AFM.

χem obtained from equation (12) indicates the dielec-
tric response to external magnetic field, which we call
the magnetodielectric response. As we can imagine, if no
magnetoelectric coupling exists, χem must be zero, there-
fore, nonzero χem can be regarded as a unique prop-
erty for FEM. In Figure 3a, we plot temperature de-
pendence of χem for FE-FM. This figure conveys two
pieces of important information. First, as a function of

Fig. 4. Magnetic-field dependence of magnetocapacitance
ε(h,T )−ε(0,T )

ε(0,T )
at different temperatures.

the temperature, χem has its maximal value at TC . This
demonstrates that the most remarkable magnetodielectric
effect appears around TC . When temperature departures
from TC , χem decreases fast, showing the fading of the
magnetodielectric effect. Second, if we compare the three
curves which correspond to h = 0.2, 0.4, 0.6 (tesla), re-
spectively, we find a higher magnetic field will induce a
lower, smoother and broader peak. When h approaches to
zero, the peak is divergent (we haven’t shown it) corre-
sponding to the anomaly in Figure 2a. The lowering trend
of the peak-value means that, the magnetodielectric re-
sponse decreases with the increasing magnetic field. In
Figure 3b, the magnetoelectric susceptibility diagram of
FE-AFM is provided, in which two peaks are observed:
one is around TN , and the other is below TN . We can
see that the low-temperature peak increases with the in-
creasing magnetic field, which is contrary to the behavior
of the peak at TN . We find that when the applied mag-
netic field is low, the magnetodielectric response at TN

dominates. When the magnetic field gets higher, the low-
temperature response gets to the windward. If we continue
to increase the magnetic field, the peak at TN will be com-
pletely suppressed and the low-temperature peak will shift
to 0 K (not shown). In sum, for FE-AFM, higher magnetic
field and low temperature are two necessary conditions to
obtain larger magnetocapacitance and magnetodielectric
response.

In the end, we specially investigate the magnetoca-
pacitance for FEM-FM in Figure 4. We can see that the
MC-curve shows a steep decrease in the low-field range.
When the applied magnetic field becomes higher, the
trend of the curve becomes flat. What’s more, when the
external magnetic field is high enough, MC gets to its satu-
rated value. From the slope of the curve we draw the same
conclusion in Figure 3a: the dielectric response decreases
with the increasing magnetic field. In addition, compare
the magnetocapacitance at different temperatures, we find
that the absolute magnitude of the magnetocapacitance
increases with the increasing temperature and gets to the
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maximum around TC (TC ≈ 5.4). If we further increase
the temperature to make the system enter into the param-
agnetic phase, we find that the magnetocapacitance again
decreases. This is in good agreement with the experimen-
tal result [16].

4 Conclusion

In the present work, we investigate the magnetodielec-
tric effect in ferroelectromagnets from three aspects:
1. Origin of the magnetodielectric effect; 2. dielectric
change; 3. Magnetodielectric response. For ferroelectric-
ferromagnets, large magnetocapacitance and magnetodi-
electric response are observed only around TC . When
temperature is away from TC , they soon diminish. In
addition, we find the magnetocapacitance increases with
the increasing magnetic field, while the magnetodielec-
tric response decreases with the increasing magnetic field.
For ferroelectric-antiferromagnets, low-temperature range
draws our attention. With the application of a higher mag-
netic field, both large magnetocapacitance and magnetodi-
electric response are observed in low-temperature range.
The practical interest in multiferroic ferroelectromagnets
arises from device applications. As a qualitative research,
our theoretical work may provide helpful guidance for the
practical application.
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